upper semicomplete homomorphism - определение. Что такое upper semicomplete homomorphism
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое upper semicomplete homomorphism - определение

MORPHISM (STRUCTURE-PRESERVING MAP) BETWEEN TWO ALGEBRAIC STRUCTURES OF THE SAME TYPE
HomoMorphism; Homomorphisms; Homomorphic; E-free homomorphism; Homomorphy; Homorphic; Principal homomorphism; Surjective homomorphism; Injective homomorphism; Bijective homomorphism
  • surjective]].

Topological homomorphism         
TVS homomorphism; Topological vector space homomorphism; TVS-homomorphism
In functional analysis, a topological homomorphism or simply homomorphism (if no confusion will arise) is the analog of homomorphisms for the category of topological vector spaces (TVSs).
Algebra homomorphism         
RING HOMOMORPHISM PRESERVING SCALAR MULTIPLICATION
Algebra isomorphism; Homomorphism of algebras; Algebra endomorphism; Algebra automorphism
In mathematics, an algebra homomorphism is a homomorphism between two associative algebras. More precisely, if and are algebras over a field (or commutative ring) , it is a function F\colon A\to B such that for all in and in ,
Chern–Weil homomorphism         
Chern–Weil theory; Chern-Weil; Weil homomorphism; Chern-Weil homomorphism; Chern-Weil theory
In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold M in terms of connections and curvature representing classes in the de Rham cohomology rings of M. That is, the theory forms a bridge between the areas of algebraic topology and differential geometry.

Википедия

Homomorphism

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

Homomorphisms of vector spaces are also called linear maps, and their study is the subject of linear algebra.

The concept of homomorphism has been generalized, under the name of morphism, to many other structures that either do not have an underlying set, or are not algebraic. This generalization is the starting point of category theory.

A homomorphism may also be an isomorphism, an endomorphism, an automorphism, etc. (see below). Each of those can be defined in a way that may be generalized to any class of morphisms.